Deterministic Blind Separation of Sources Having Different Symbol Rates Using Tensor-Based Parallel Deflation
نویسندگان
چکیده
In this work, we address the problem of blind separation of non-synchronous statistically independent sources from underdetermined mixtures. A deterministic tensor-based receiver exploiting symbol rate diversity by means of parallel deflation is proposed. By resorting to bank of samplers at each sensor output, a set of third-order tensors is built, each one associated with a different source symbol period. By applying multiple Canonical Decompositions (CanD) on these tensors, we can obtain parallel estimates of the related sources along with an estimate of the mixture matrix. Numerical results illustrate the bit-error-rate performance of the proposed approach for some system configurations.
منابع مشابه
Blind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm
Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...
متن کاملTensor based source separation for single and multichannel signals
Blind source separation (BSS) techniques have the aim of separating original source signals from their mixtures without having or with a little knowledge about the source signals or the mixing process. Tensor based source separation techniques have become increasingly popular for various applications since they exploit different inherent diversities of the sources. Therefore, they can improve t...
متن کاملBlind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملBlind partial separation of underdetermined convolutive mixtures of complex sources based on differential normalized kurtosis
This paper concerns the blind separation of P complex convolutive mixtures of N statistically independent complex sources, with underdetermined or noisy mixtures i.e. P < N . Our approach exploits the assumed distinct statistical properties of the sources: P sources are non-stationary, while the others are stationary. Our method achieves the ”partial separation” of the P non-stationary sources....
متن کاملBlind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010